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Abstract

In this paper, we share our experience in designing a
convolutional network-based face detector that could han-
dle faces of an extremely wide range of scales. We show
that faces with different scales can be modeled through a
specialized set of deep convolutional networks with differ-
ent structures. These detectors can be seamlessly integrated
into a single unified network that can be trained end-to-
end. In contrast to existing deep models that are designed
for wide scale range, our network does not require an im-
age pyramid input and the model is of modest complexity.
Our network, dubbed ScaleFace, achieves promising per-
formance on WIDER FACE and FDDB datasets with prac-
tical runtime speed. Specifically, our method achieves 76.4
average precision on the challenging WIDER FACE dataset
and 96% recall rate on the FDDB dataset with 7 frames per
second (fps) for 900 x 1300 input image.

1. Introduction

Face detection is one of the most studied problems in
computer vision [26]. It serves as a fundamental step to
many facial analysis applications, including face alignment,
face recognition, and face parsing. While existing deep
learning-based detectors have achieved supreme recogni-
tion accuracy, the difficulty of finding faces of a wide range
of scales remains. In many real-world applications such as
public space visual surveillance, faces typically appear in
different sizes, and they are all required to be detected.

Previous methods [9, 10, 23] learn highly discrimina-
tive scale-invariant representation to solve this problem,
which is difficult since the clues to be gleaned for recog-
nizing a 300-pixels tall face are qualitatively different than
those for recognizing a 10-pixels tall face [7]. Here is the
dilemma — On one hand, more convolution layers are re-
quired to learn highly representative features that can dis-
tinguish faces with large appearance variations, i.e., pose,
expression, and occlusion from clutter background. On the
other hand, by going deeper, the spatial information will
lose through pooling or convolution operations. This spatial
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Figure 1. A small network may be more well-suited for small
faces. The distribution of foreground and background score gen-
erated from different methods. Foreground samples come from
faces in the range of 10pz — 40pz. Similarly background are the
negative patch in the same range of scale with the foreground.

information is essential to recognize tiny objects. This prob-
lem can be partially alleviated by using a dilation operation
and reducing the number of pooling operations, which have
been widely applied to other computer vision applications,
i.e., image segmentation [3, 14]. However, the computa-
tion will dramatically increase with high spatial resolution
of feature maps in the network, making it difficult to meet
practical runtime speed.

Recent face detection methods typically follow the
paradigm of Faster-RCNN [20] and Single Shot MultiBox
Detector (SSD) [13], the two popular frameworks for object
detection. Faster-RCNN proposes anchor boxes of different
sizes to deal with different scales. The range of scale it
can handle is limited by the granularity of the convolutional
feature map output by the last convolutional layer shared
among region proposal and detector networks. SSD em-
ploys multi-scale deep features to jointly estimate for class



probabilities and bounding box regression. The multi-scale
inference helps to detect objects of different scales but each
of its stages is not specially trained to handle a specific scale
range. In other words, no constraints are enforced during
the training stage that a stage must do well on certain scales.

We believe that faces with different scales possess differ-
ent inherent visual cues and thus lead to disparate detection
difficulties, which can be more effectively modeled with
different specialized network structures. Figure 1 shows the
score distribution of faces in the scale of 10px — 40px with
background in the similar scale. This figure suggests that
a specialized network, which needs not be deep, but with
carefully designed depth and spatial pooling, can obtain
very competitive results compared to state-of-the-art mod-
els when it focuses on a specific scale range.

To this end, we present a novel approach of designing a
scale-friendly face detection deep network. It splits a large
range of target scales into a set of sub-ranges. Each sub-
range is modeled by a specialized network with carefully
designed depth and spatial pooling to optimize the recep-
tive field for the particular range. These networks can be
seamlessly combined into a single network (e.g., resem-
bling the structure of ResNet-50), and thus optimized in an
end-to-end fashion. In the methodology section, we system-
atically explore and discuss different aspects of designing
the network, including the way we find the best detection
scale ranges for a network and the plausible configurations
of combining multiple scale-specific detectors into a single
unified network.

The proposed face detection network, dubbed ScaleFace,
achieves promising performance on challenging benchmark
datasets, namely, WIDER FACE [24] and FDDB [£&], with
practical runtime speed. WIDER FACE [24] is the most
challenging data given its wide spread of face scales. The
best method to date of submission is [7], which achieves an
average precision of 81%, and runs at 0.6 fps. Our method,
ScaleFace, achieves an average precision of 76.4 with just
7 fps. The fundamental improvement in speed comes from
two parts. Our method enjoys a more efficient way to inte-
grating different scale-specific networks, which allows us to
use a smaller backbone model while achieving good perfor-
mance. Importantly, we use a single scale inference rather
than image pyramid inference.

2. Related Work

Deep learning based face detection. Following the re-
markable performance of deep convolutional networks on
image classification [21] and object detection [4], recent
face detection studies [I, 10, 11, 17, 23] also embrace
deep learning for improved performance. These methods
use deep convolutional networks as the backbone struc-
ture to learn highly discriminative representation from data
and achieve impressive results on benchmark datasets such

as FDDB and AFW. Among these methods, Faceness-
Net [23], STN [1], and Grid-Loss [ | 7] are designed to detect
faces under occlusions and large pose variations, Cascade-
CNN [10] and its variants [18] achieve a good trade-off
between speed and accuracy. Meanwhile, the unsatisfac-
tory performance of existing methods on recent benchmark
datasets in object detection [12] and face detection [24] re-
veals a new challenge on detecting tiny objects in uncon-
trolled environments.

There are unique and inherent challenges in multi-scale
face detection that require special and systematic analysis.
In this study, we are trying to detect faces in an extremely
large range of scale, of which the variance is much larger
than object detection, i.e., the target scale of object detec-
tion lies in [30-300] [13] while that of face detection is [10-
1000]. In addition, tiny faces usually appear very close to
each other in a crowded scene. The design of appropriate
receptive fields for different face scales becomes essential.

Multi-scale face detection. A number of studies [26] have
been proposed to address multi-scale face detection. Recent
deep learning-based methods can be categorized into two
classes: scale-invariant based methods [10, 9] and scale-
variant based method [7, 13, 18].

(1) Scale-invariant methods: The vast majority of face de-
tection pipelines focus on learning scale-invariant represen-
tation. The seminal work of Faster-RCNN [9] subscribes
to this philosophy by extracting scale-invariant features
through region of interest (ROI) pooling. The Cascade-
CNN [10] normalizes target object into a fixed scale and
conducts multi-scale detection through an image pyramid.
However, Faster-RCNN and Cascade-CNN are not specif-
ically designed to finding faces in a wide range of scales.
Specifically, the foreground and background ROIs of Faster-
RCNN map to the same location on deep features, causing
ambiguity to the classifier. The Cascade-CNN is mainly
formed by a set of three-layer CNNs thus its capacity con-
fines it from handling large appearance and scale variances
at the same time.

(2) Scale-variant methods: In contrast to learning scale-
invariant representation, Qin et al. [18] propose a joint cas-
cade network for learning scale-variant features. Samples
from different scales are modeled separately by different
networks and the detection results are generated by merg-
ing predictions across networks. Similar to Cascade-CNN,
the capacity of the individual network in the joint cascade
network is insufficient to handle large scale and appearance
variances. SSD [13] is proposed for object detection by
making use of scale-variant templates based on the deep
features. The SSD essentially tries to detect objects of var-
ious scales at different stage/layer of the network. Never-
theless, a direct application of SSD for small face detection
still does not return satisfactory results (see Fig. 1) since the
scale-variant templates at early layers cannot cope well with
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Figure 2. The pipeline of ScaleFace. The proposed network contains three scale-variant detectors which are incorporated into a single
backbone network, which allows all detectors to be optimized end-to-end. Each scale-variant detector generates scale-specific detection
predictions. The final detection results are obtained by aggregating all scale-variant detector results.

large-scale variance. While in the later stages, SSD will suf-
fer similar overlap mapping problem as in Faster-RCNN.

Recently, Hu et al. [7] propose a multi-task context-
aware framework and achieve impressive results on detect-
ing tiny faces. They use very deep neural networks and
maintain spatial pooling stride by 8 to alleviate the over-
lap mapping problem. In addition, features from different
stages are aggregated to enhance the discriminative power
for classification. A large set of scale-variant templates is
learnt and multi-scale inference is required during testing.
This method is computationally expensive.

Differences with previous methods. Our method dif-
fers from previous methods in many aspects. We argue
that given a deep neural network there exists a best range
of scale for detection. Conceptually different from scale-
invariant based methods, we address face detection through
training specialized networks with the most suitable depth
and spatial pooling stride, so that they are good in each spe-
cific sub-range of scales. Our method differs from SSD.
The latter can be viewed as a cascade framework with each
stage generating predictions to cover certain scales. How-
ever, samples that cannot be detected in the early stage still
need to be retrieved in the later stage. This effectively re-
quires every stage to generalize well in dealing with large-
scale variance. In contrast, each stage in our framework is
trained to detect faces fall within a certain range of scales.
That allows each stage to specialize rather than generalize
as in SSD. Different from Hu et al.’s method [7], which is
formulated as a multi-task learning network, we incorpo-
rate a set of scale-variant networks into a single network for
end-to-end optimization. This not only reduces computa-
tions through sharing parameters but also improves recog-
nition performance by learning more discriminative repre-
sentation jointly.

3. Learning a Scale-Friendly Face Detector

In this section, we first provide an overview of our frame-
work and then discuss the details. Figure 2 depicts the over-
all test pipeline of ScaleFace. Our framework contains three
scale-variant detectors with different size of spatial pooling
stride and depth. The scale-variant detectors are integrated
into a single backbone network by sharing representation.
The single backbone network turns out to have an identi-
cal structure as ResNet-50 [6]. We extract features from
the last layer of each res-block, i.e., (res2cx, res3dx, res4fx,
res5cx), from this backbone network. The features are used
to train a region proposal network and a Fast-RCNN clas-
sifier. We henceforth refer to these features as (res2, res3,
res4, resS) features. We use ROI pooling operation to ex-
tract features of different regions for detection. With this
unique structure that incorporates different scale-variant de-
tectors, our algorithm can detect faces of different sizes ef-
ficiently by just using a single scale inference, i.e., using a
single input image without an image pyramid.

Given a test image, a forward pass is performed and
each scale-variant face detector will generate detection win-
dows independently. As shown in Figure 2, each scale-
variant face detector can detect faces fall within a certain
range of scale. The detection windows generated from
different scale-variant face detectors are merged and non-
maximum suppression (NMS) is applied to eliminate highly
overlapped windows.

In the following subsections, we present our considera-
tions and insights in designing the network. We accompany
our discussions with some experimental studies to gain a
more detailed understanding. We follow the Scenario-Int
protocol on WIDER FACE dataset and use 12,921 images
for training. We report results on WIDER FACE validation
set that contains 3,200 images. We use the official eval-
uation toolbox [24] to perform evaluation and use average



Table 1. Average precision on WIDER FACE validation set. We
evaluated different networks on faces of different scales.
Convl+Res2 Res2+Res3 Res3+Res4 Res4+Res5

Face scale | demq stride=8  stride=16  stride=32
Small 56.21% 60.99% 54.51% 19.97%
Medium 69.54% 71.49% 74.54% 69.33%
Large 58.43% 72.19% S1.80% $4.68%

precision (AP) to measure face detection performance.

To frame the discussion, we ask three questions. Given
a network structure, what is the best range of scale for this
network to perform detection? We show that there exists an
intrinsic correlation between network structure and detec-
tion scale. Since different scales can be modeled by differ-
ent networks, the next question is, given a target range of
scale, how many networks are sufficient to cover the whole
target range? Suppose we have a set of face detectors with
different network structures, we are interested about how to
combine these convolutional networks into a single unified
network to gain efficiency and performance. Namely, What
is the best arrangement of the networks?

3.1. Finding a network for specific scale range

We hypothesize that faces with different scales can be
better modeled by networks with different spatial pooling
structure. Specifically, the projected face scale needs to
match the ROI pooling size. To verify the effectiveness
of this design, we first group faces into three classes ac-
cording to the image height: small(10pz — 40px), medium
(40px — 140px), and large(140px or more). For each face
group, we train four deep networks with different spatial
pooling structure. Specifically, we train networks with a
stride chosen from the set of {4, 8, 16, 32}, which is based
on the ResNet-50 structure shown in Fig. 2. For example,
the network with a stride of 4 is constructed using layers
from Convl to the Res2c. Multi-scale feature (‘“Hyper-
columns” [5]) from the current stage and previous stage
(which has half number of stride of the current stage) are
used and ROI pooling with a template size of 5 x 5 is ap-
plied for feature extraction as shown in the Fig. 2.

Table 1 summarizes the average precision of various pos-
sibilities on WIDER FACE validation set. The small faces
(10pz — 40pzx) achieve the best performance using a net-
work with a stride of 8. The projected face scale on the
feature map is 2px — dpx, which is in the similar scale of
ROI template. Similarly, we observe the best performance
of certain scales when the projected face scale on the fea-
ture map is close to the ROI template. This observation is
consistent across three face groups. We investigate further
by studying Fig. 3(a), which shows the influence of differ-
ent network structures towards the detection performance of
faces with different sizes. Recall that, for a proposed ROI,
the size of ROI on the target layer is determined by the spa-
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Figure 3. (a) The average precision of different network structure
for different scale of faces. The green box represents the ROI tem-
plate. (b) The degree of overlap between foreground and back-
ground receptive fields at different stages of a deep network. The
blue box represents foreground while the red box represents back-
ground.

tial pooling parameters. Typically convolutional features at
higher layers tend to have smaller projected ROI size. As
we can observe from Figure 3(a), the detection performance
of a target scale consistently decreases when the ROI on
the target layer is smaller than ROI pooling size. Even if
we increase the depth of the network which will generally
improve the discriminative power of the feature representa-
tion, the detection performance still drops. We verify that
this is due to overlapping between feature maps after spa-
tial transformation. Specifically, as shown in Figure 3(b),
the background region will map to the same location of the
foreground region which will introduce ambiguity for the
classifier.

From Figure 3(a), we observe that using multi-scale fea-
ture (known as “Hypercolumns” [5]) alone is not sufficient
to prevent performance drop. Remapped features with a
similar size of ROI template will yield the best detection
performance. If the projected region is much larger than
the ROI template discriminative information will loss dur-
ing pooling procedure. On the other hand, if the projected
region is much smaller than the ROI template, the insuf-
ficient information and overlapping between features will
cause a performance drop. The results in Table 1 confirm
our observation that samples with different scale need to be
modelled with different network structures, i.e., small face
(10pz-40px) should be modeled using network with spatial
a stride of 8 while larger face (> 200px) can use a network
with a stride of 32.

This experiment shows that the spatial resolution of a
network is the key factor to achieve good detection perfor-
mance for samples falls within a certain range of scales.



3.2. How many scale-variant detectors

Given the observations in Sec. 3.1, we now discuss an-
other question. If our target object lies on a very wide range
of scales, how can we split the target range into a set of
sub-ranges to achieve good detection performance? Since
different network structures would have different face de-
tection performances, the trivial solution will be training a
scale-variant detector for every single scale. If the target
range is [n, m], where n << m, there will be m —n + 1
number of classifiers. This approach would result in a num-
ber of highly redundant networks. To another extreme, we
can train a single network to cover the whole target scale,
which is exactly the scale-invariant based method. This type
of network structure is not optimal to cover the full target
scale, as discussed in Sec. 2.

We hope to find a good trade-off between accuracy and
runtime speed. A straightforward way is to split the tar-
get range uniformly into %k portions and adopt the strategy
discussed in Sec. 3.1 to obtain the best network for each
sub-range. However, it may not be a viable solution since
appearance variation is not uniformly distributed along the
scale. Specifically, from our observation, small faces (less
than 40 pixel height) lose most appearance information
and can be characterized by rigid structures and context.
Medium faces (40px — 140px) have high variance since
persons in these images are usually not the main subjects
of the photographer, and therefore they can be of various
poses looking at different directions. Large faces (140px or
more) usually have low variance as they are the main sub-
jects when a photo is captured. These large faces are usually
in a frontal or profile pose. This simple observation pro-
vides us with a clue on partitioning the scale range. When
this observation is considered collectively with network se-
lection of suitable spatial pooling stride, a huge gain can be
obtained in comparison to a uniform partition of range.

To validate our hypothesis, we perform an experiment
to compare the uniform partition of range (‘even splits’)
and the partitioning scheme inspired by our observation,
which considers both appearance variation and suitable spa-
tial pooling stride. Table. 2 shows the range of scales us-
ing different split criteria. Again, we use ResNet-50 as
the backbone network to conduct this experiment. Dif-
ferent target scales are assigned to different stages of the
backbone network with suitable spatial pooling stride as
shown in Table. 3. The average precisions of face detec-
tion on WIDER FACE validation set are shown in Table. 4.
The ‘three splits’ network outperforms other methods con-
sistently under three evaluation settings. ‘One split’ net-
work and ‘two splits’ network report inferior performance
on detecting small faces, since small faces [10pxz — 40px]
are modeled using Res4 and Res5 features with pooling
stride 16 and 32, respectively. The four splits network fails
to detect small faces because of insufficient discriminative

Table 2. The range of scales under different range partitioning
schemes.

Method [ Split ranges
One split [10,1300]
Two splits [10,140], [140, 1300]
Two evenly splits [10, 650], [650, 1300]
Three splits [10, 40], [40, 140], [140, 1300],

Three evenly splits
Four splits
Four evenly splits

[10, 450], [450, 900], [900, 1300],
[10, 25], [25, 60], [60, 140], [140, 1300]
[10,300], [300, 600], [600, 900], [900, 1300]

Table 3. The assignment of network stages to different splits.

Convl+Res2 Res2+Res3 Res3+Res4 Res4+Res5

stride=4 stride=8 stride=16 stride=32
One split v
Two splits v v
Three splits v v v
Four splits v v v v

Table 4. Evaluation of different range partitioning schemes across
three difficulty settings of WIDER FACE (Easy, Medium, Hard).

Method [ Easy = Medium  Hard
One split 82.4% 79.3%  62.4%
Two splits 83.0% 83.5% 74.7%

Three splits 86.8% 86.7% 77.2%
Four splits 84.2% 85.1% 72.1%

Two evenly splits | 78.4%  79.5%  62.8%
Three evenly splits | 72.2%  73.6%  57.1%
Four evenly splits | 68.4%  69.0%  53.1%

power of Res?2 features to distinguish small faces from clut-
ter background. The partitioning scheme based on appear-
ance variation outperforms the evenly split baselines across
all different number of splits. The main reason is that evenly
split scheme does not take network structure into consid-
eration. A miss correspondence between detection scale
and network structure would jeopardise the detection per-
formance.

This experiment shows that partitioning the scale range
based on face variation, and at the same time considering
network selection of suitable spatial pooling stride, would
give us useful clues on how many scale-variant detectors
we should build.

3.3. How to combine the scale-variant detectors

It is natural to ask a follow-up question: how to com-
bine a set of scale-variant detectors. Previous face detection
studies [18, 24] train independent detectors and aggregate
predictions generated from these detectors. There exists
high redundancy between the detectors. As we have shown
in Sec. 3.1, different face scales demand networks of differ-
ent structures. We can actually share representation among
these networks to reduce redundancy.
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Figure 4. The data processing procedure during the training stage of ScaleFace.

Table 5. Evaluation of ensembles. We report average precision
of ‘naive ensemble’ and ‘joint optimized’ on the WIDER FACE
validation set.

Method [ Easy = Medium  Hard

Navies ensemble | 73.2%  74.1%  60.8%
Joint optimize 86.8% 86.7% 77.2%

The proposed network shown in Fig. 2 shares representa-
tions between the three scale-variant detectors. We compare
it with a straightforward method that trains scale-variant de-
tectors independently, using the similar structures as our de-
tectors but without representation sharing. The predictions
generated from each scale-variant detectors are aggregated
to generate the final predictions. We call this method ‘naive
ensemble’ and our method as ‘joint optimized’. We select
top performed scale-variant detectors based on the results
shown in the Sec. 3.2 from each scale ranges to conduct this
experiment. Both ‘naive ensemble’ and ‘joint optimized’
use the same set of detectors. The evaluation results on the
WIDER FACE validation set are shown in Table. 5. The
‘joint optimized’ method outperforms the ‘naive ensemble’
method consistently across the three WIDER FACE evalu-
ation settings.

This experiment suggests that we should try best to share
representation between scale-variant detectors for joint op-
timization.

3.4. Training and implementation details

During the training of ScaleFace, each detector has its
own disjoint sets of training samples as shown in the Fig-
ure 4, which samples scale-variant regions from the input
image. Each detector should only sample scales that belong
to the range it should handle. For example, the detector
targeting at 10px-40px faces, will be trained with positive
and negative regions in the range of 10px-40pz, regions ex-
cluded from this range will not be sampled. Consequently,
different scale-variant detectors are optimized using differ-
ent ROIs and scale-variant ground-truth. The ROIs are gen-
erated by comparing intersection overlap union (IOU) be-
tween ground-truth across scales. The ground-truth regions
out of the scale range a detector should handle are assigned

as an ‘ignored’ class. Those samples that with high IOU
but belong to the ignored class will still be discarded. Faces
of particular scales may be under-represented in the data.
In such cases, we will balance the data during the training
process.

We train and test our framework on images of a single
scale. The images are rescaled to keep the longer side no
more than 1,300. As shown in Figure 2, each scale-variant
detector has no more than 4 anchors with an aspect ratio of
1 : 1. We do not tune these hyper-parameters for a par-
ticular dataset. Samples with IOU over 0.5 are assigned
as positive samples. The negative samples originate from
two sources — we sample regions with IOU in the range of
0.0—0.1 and 0.1 —0.3 in a balanced manner since both pure
background regions and ill-aligned regions are important.
Specifically, we construct background pool by randomly
sample the same number of pure background regions with
the number of ill-aligned regions, therefore, the number of
pure background regions and ill-aligned regions is 1 : 1
in the background pool. Then we uniformly sample back-
ground regions from this pool. On-line hard negative min-
ing for training Fast-RCNN branches are used. We adopt
non-maximum suppression (NMS) on the proposal regions
generated by RPN and keep top 2,000 proposals during
training and 500 proposal regions during testing. Predic-
tions generated from scale-variant classifiers are aggregated
and NMS with a threshold of 0.3 is adopted to generate the
final results.

4. Model compression

To improve the runtime efficiency of our face detec-
tor, we conduct model compression to reduce parameters.
Specifically, we reduce the number of filters in every layer
of the backbone network and pretrain this new network
on ImageNet dataset on the 1, 000-objects recognition task.
Next, we finetune the compressed model on the face detec-
tion task using the same procedure introduced in Sec. 3.3.



5. Results on benchmark datasets

Training datasets. We use WIDER FACE dataset [24],
which is proposed based on WIDER dataset [22], to train
our model. The WIDER FACE dataset contains 32, 203 im-
ages and 393, 703 annotated faces. We follow the Scenario-
Int protocol on WIDER FACE dataset and use 12,921 im-
ages for training. As mentioned in the Sec. 3.4, data aug-
mentation is necessary to train our face detector. Images
that contain more than 25 valid faces are duplicated 5 times
as additional data, since most faces in the WIDER FACE
dataset appear in these 20% of images. The data aug-
mentation can ensure the network has enough images used
for learning small faces. Horizontal flipping is applied on
all training images. The augmented training set contains
44,000 images.

Test datasets. We verify the effectiveness of ScaleFace
on two benchmark datasets: WIDER FACE [24] and
FDDB [8]. Since we use WIDER FACE training split
to train our face detector, we follow Scenario-Int evalu-
ation protocol and test on the WIDER FACE test split.
The WIDER FACE test set contains 16,000 images with
196, 850 annotated faces. The FDDB dataset contains anno-
tations for 5, 171 faces in a set of 2, 845 images. We follow
the standard evaluation protocol on these datasets — average
precision (AP) is used as evaluation metric on the WIDER
FACE dataset and ROC evaluation is used on the FDDB
dataset.

5.1. Evaluate on benchmark datasets

We evaluate our face detector against state-of-the-

art face detection methods on FDDB [8] and WIDER
FACE [24] datasets.
FDDB: We test our model trained on WIDER FACE di-
rectly on FDDB without fine-tuning. There exists a mis-
match between annotations in WIDER FACE and FDDB. In
particular, the former uses bounding box annotation and the
latter employs bounding ellipse annotation. Consequently,
we follow the standard practice [15] and train a linear re-
gressor to transform our predicted bounding boxes to meet
FDDB annotation style. We compare our method with state-
of-the-art face detection methods [2, 15,23, 19,27, 11]. The
results on discrete score are shown in Fig. 5. Our method
achieves 94.55% recall rate with 200 false positives and
96% recall rate with 2,000 false positives, outperforming
the best baseline method by 2.3% and 1.0% recall rate, re-
spectively. The result demonstrates the effectiveness and
good generalization capability of ScaleFace.

WIDER FACE: We train our face detector on WIDER
FACE training set and report face detection performance
on the held-out test set. The WIDER FACE dataset has
three evaluation settings: easy, medium, and hard. It is
observed that the difficulty settings correlate with the face
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Figure 5. FDDB results. Recall rate is shown in the parenthesis.
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Figure 6. Precision and recall curves on WIDER FACE hard set.

scales. In the hard setting, all valid face annotations (faces
with a height larger than 10pz) are used for evaluation. We
compare our method with top performers [25, 27, 28,7, 16]
on WIDER FACE dataset. In order to verify the effec-
tiveness of our method, we prepare two strong baselines,
Faster-RCNN and SSD, which are built using ResNet-50.
The baselines thus have the same model capacity as Scale-
Face. We change the convolution stride in Res4f to 1, which
makes the maximum spatial stride of the network equals to
16. The Faster-RCNN uses Res5 and Res3 features for clas-
sification and it is trained on the WIDER FACE training set
with multi-scale data augmentation following the protocol
presented in [7]. For each stage of SSD, we apply the same
strategy employed by our method, i.e., it also uses multi-
scale features from the neighboring stage for the recogni-
tion.

Figure 6 shows the precision and recall (PR) curves of
different methods on WIDER FACE hard set. Our method,
in general, shows a compelling result in the hard setting
and outperforms FasterRCNN and SSD by a considerable
margin (4.8% and 13.9% respectively). Table 6 summa-
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Figure 7. The first row shows the output of each stage in our network. The second row shows qualitative results with different attributes.

More examples can be found in the appendix.

Table 6. Evaluation of different range partitioning schemes across
three difficulty settings of WIDER FACE (Easy, Medium, Hard).

Method [ Easy Medium  Hard

Faceness-Net [23] | 71.6%  60.4% 31.5%
LDCF+[16] 79.7%  17.2%  56.4%
MTCNN [27] 85.1% 82.0% 60.7%

CMS-RCNN [28] | 90.2%  87.4% 64.3%

HR [7] 92.3% 91.0% 81.9%

SSD [13] 89.9% 85.4% 62.5%
FasterRCNN [20] | 89.5%  87.1% 71.6%
ScaleFace 86.7% 86.6%  76.4%

rizes the average precision on three evaluation settings. The
HR [7] outperforms our method by using ResNet-101 with
a stride pooling equals to 8. A total of 25 scale-variant
templates is used to generate detection results while multi-
scale inference is required. It addition, HR learns addi-
tional post-regressors to improve face localization. Without
this post-processing, the average precision on the hard set
drops to 79.8%. If we switch the ResNet-101 with ResNet-
50 as the backbone network of HR, its performance will
drop by 2% across three evaluation settings. Our method
does not conduct post regression and achieves 76.4% AP
on WIDER FACE hard set, which is on par with HR us-
ing the same backbone network (ResNet-50) and without
post-processing. It is worth pointing out that our method
achieves state-of-the-art performance when the precision is
over 95% on the WIDER FACE hard set.

5.2. Runtime analysis

As discussed in Sec. 4, ScaleFace can be compressed by
reducing the number of filters in every layer of the backbone
network. In this experiment, we build a compressed model
based on this method. First, we reduce the number of filters
in every layer of ResNet-50 to half the original. We call this
model as ScaleFace-Fast. The model is first pretrained on

Table 7. Runtime analysis. The time is averaged across 1,000

images with a resolution of 900 x 1300.

Method [ AP Runtime (ms)
FastRCNN 71.2% 140
SSD 62.4% 110
HR 81.9% 1,600
ScaleFace 76.4% 270
ScaleFace-Fast | 75.5% 160

the ImageNet dataset and fine-tuned for face detection using
the WIDER FACE dataset.

We compare ScaleFace and its compressed version with
Faster-RCNN, SSD, and HR. All methods are tested using
NVIDIA Titan X GPU by averaging the runtime of 1,000
images randomly sampled from the WIDER FACE dataset.
ScaleFace achieves 76.6% average precision with 4 fps for
900 x 1300 image. Faster-RCNN and SSD record 7.1 fps
and 9.1 fps for 900 x 1300 input but the average precisions
are 4.8% and 13.9% lower than ScaleFace. HR achieves the
best face detection performance, but it uses a very deep neu-
ral network with high-resolution feature maps. Dense scale
templates are applied and multi-scale inference is required,
which dramatically increase its computation. The runtime
speed of HR is 0.6 fps. ScaleFace runs 6 times faster than
HR.

Our compressed model ScaleFace-Fast achieves 75.5 av-
erage precision on WIDER FACE test set. The ScaleFace-
Fast needs only 160ms for detecting faces in a 900 x 1300
image. The fast version of our method only experiences a
small performance drop 0.9%, compared with the original
ScaleFace. The compressed model runs 10 times faster than
HR, while achieves reasonably good detection performance
with practical runtime speed.



6. Conclusion

In this work, we have proposed a simple yet effective
framework to detect faces with very large-scale variance.
Our method exhibits a good trade-off between performance
and speed for face detection. We have demonstrated that
both network structure and target scale are correlated. Un-
derstanding such correlation is a key to achieving good de-
tection performance. Specifically, we show that different
scale range needs to be modeled by different network struc-
ture. The size of target object after remapping to the fea-
ture maps used for recognition should be in the similar scale
with ROI pooling feature. Given a very large range of scale,
we can split the original scale into several sub-scales by
considering appearance variations of faces. Finally, differ-
ent scale-variant networks can be incorporated into a single
network for end-to-end optimization. The ensemble can be
further compressed without losing much performance while
greatly improving its efficiency.

A. Appendix
A.1. Network structure

Figure. 8 shows detailed network structure of our model.
Each scale-variant detector consists of a region proposal
network and a Fast RCNN classifier. The region proposal
network is implemented by using a convolutional layer with
3x 3 kernel and 512 channels. The Fast RCNN contains two
convolutional layers, each of which uses 3 x 3 kernel and
512 channels and two fully connected layers with 1024 and
512 neurons as shown in Figure. 8.

A.2. Visual samples of ScaleFace

Figure. 9 shows the predictions generated from differ-
ent scale-variant detectors and final detection results. The
scale-variant detectors only need to generate detection re-
sults in a certain range of scale. As we can observe from
Figure. 9 the predictions generated by small face detector
has no overlap with predictions generated by the large face
detector. The medium face detector serves as a bridge to
generate intermediate scale predictions with some overlaps
with the small face detector and the large face detector to
ensure high recall rate.

A.3. Compare with baseline methods

We compare Faster-RCNN [20] and SSD [13] with the
proposed ScaleFace. Figure 10 shows the results generated
by different algorithms. Faster-RCNN generates a number
of false alarms (indicated by red bounding boxes) on small-
scale predictions. This is because projected ROIs for small
faces at the deep layer quickly shrink to 1 x 1, which is
much smaller than the ROI pooling size. This projection
maps backgrounds and objects to a small region on the fea-

ture map and therefore introduces ambiguity to the classi-
fier. SSD tries to make predictions on full target detection
scale in every stage, this strategy works fine when objects
do not have very large variance in scale. In the early stage of
SSD, the network tends to generate false alarms because of
limited representative power. In the later stage, it seems that
the network overfits to medium and large faces. In contrast,
our method consistently performs well across all scales.
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Figure 8. The detailed network structure of ScaleFace.
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